

BUSINESS/MISSION CRITICAL INTELLIGENCE

SOLUTION ARCHITECTURE CRITICAL INTELLIGENCE

5G CRITICAL COMMUNICATIONS CAPACITY / COVERAGE / GOS NEEDS

Media Sharing, Virtual Reality, Telepresence & IoT become force multipliers, driving capacity needs with intense periods of high demand in incident scenes, coupled with a need for continual connectivity for IoT, personal communications & secure apps

Critical communications requires <u>secure</u>, <u>highly reliable</u> & <u>ubiquitous coverage</u>, <u>system resilience</u> and <u>graceful degradation</u>

<u>Deployable systems</u> with mesh, ad-hoc and direct mode network topologies needed to fill capacity & coverage gaps

<u>"Security by Design"</u> – security is part of the design process from the beginning

5G CRITICAL COMMUNICATIONS TECHNOLOGY ELEMENTS

DENSIFICATION

Massive increase in number of devices, sites, backhaul SDN / NFV

Site density approaching 1 site per active user

Latency reduction

SPECTRUM SHARING

Highly dynamic spectral reuse and interference management

mmWave (>10GHz spectrum with > 1 GHz channels)

COVERAGE & CAPACITY

Pervasive coverage (95%+) with high minimum throughput

Transparent to broad application ecosystem

Deployable mobile sites, repeaters, relays, ad-hoc and direct modes

SECURITY

5G enables an explosion of interconnected devices, and paradigms broadening the attack surface

Security must be "baked in" 5G standards <u>and</u> 5G devices

5G SMARTER MUST PROVIDE REQUIREMENTS FOCUSED ON BUSINESS/MISSION CRITICAL COMMS

SECURITY & 5G: IOT AS A DRIVER

2015 FCC TAC Cybersecurity WG key findings on IoT

- Perceived gaps:
 - There have been many security gaps publicly identified in existing IoT solutions
 - Many vendors lack knowledge around the secure SW development life cycle (SDLC)
- How industry is addressing these gaps:
 - Many industry orgs provide compliance requirements that includes security
 - Multiple industry best practices include CTA, CSA, NIST, FTC, DHS, OWASP

2016 FCC TAC Cybersecurity WG task around 5G Security

- FCC's Goal for the WG
 - Recommend to the FCC the strategy, procedures and steps necessary to help incorporate the concept of "security by design" into the very fabric of 5G
- Proposed scope/direction
 - Leverage the 2015 TAC IoT work and focus on IoT applications of 5G technology
 - Create a list of key security principles that should be built into the 5G IoT ecosystem
 - Identify SDOs and develop an action plan to influence the standards development process

SECURITY & 5G: KEY CONSIDERATIONS

- 5G will enable greater connectivity and an explosion of interconnected devices, broadening the attack surface
- Critical comms, critical infrastructure, ICS, healthcare, etc. drive the need for stronger security capability
- Technical considerations:
 - Protection of dynamic spectrum enablers (e.g. DSA)
 - Privacy enablers (e.g. ephemeral "thing" identifiers)
 - Highly scalable deployment/maintenance models including SDN and NFV
 - Crypto agility for greater interoperability & longevity
 - IoT friendly, decentralized trust models
 - User friendly and interoperable user authentication
 - Rapid defense/response through edge and swarm intelligence

NIST Cyber Security
Framework Core Functions

IDENTIFY

PROTECT

DETECT

RESPOND

RECOVER

WE INNOVATE TO MOBILIZE AND CONNECT PEOPLE IN THE **MOMENTS THAT MATTER**

MOTOROLA SOLUTIONS